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Motivation

» SWOT direct observations will include water surface
elevations, widths and slopes

» Discharge is very important for hydrology

» Direct estimation of discharge through Manning's
equation can be difficult

» Models can predict discharge, but impeded by significant
errors
» Forcings (e.g. precipitation, boundary inflows)
» Model parameters (e.g. channel characteristics)
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» Merging SWOT observations with modeling predictions
via data assimilation
» Developing and testing of SWOT assimilation framework
for discharge estimation



Experimental design

» “Virtual” SWOT observations
» Synthetic data assimilation experiment
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Models

» LISFLOOD-FP raster-based hydrodynamics model

» 1-D solver for channel flow

» 2-D flood spreading model for floodplain flow
» Kinematic, Diffusive and Inertial formulations
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Requires information on topography, river channel
characteristics and boundary inflows

» Assumption of
rectangular channel

» Has been

successfully applied
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in a number of river
systems (mostly
smaller scale)




Data assimilation

A number of assimilation techniques available
Extended Kalman filter (EKF)

» Requires explicit modeling of model error covariance,
and tangent linear models

Ensemble Kalman filter (EnKF)

» Requires ensemble of model states
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EKF is used, estimating the model error covariances using
the NMC method
» assumes error correlations are similar to correlations of
differences between successive forecasts
Every SWOT pass is assimilated separately (filtering)
» Smoothing could be done by assimilating observations
for every orbit cycle
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Study area

» ~1000 km reach of the
Ohio River basin

» Drains an area of
~220,000 km?

» Topography from National
Elevation Dataset (30 m)

» River topology from
HydroSHEDS

» Channel width and depth
from developed power-law
relationships

» Modeled main stem with
inflows from tributaries




Simulating SWOT observations

» Synthetic observations from the
SWOT instrument simulator

» Produces data with correct SNR,
geometric and noise characteristics

» Example interferograms and processing
chain
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Open-loop simulations

40°

3971

» True water depth and differences of three open-loop
simulations from truth
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» Channel discharge for
one time step

» Inflow error dominates
simulated discharge

» Errors in channel
characteristics play a
less significant role
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River discharge

» Errors in inflows as well as channel characteristics
» Ingesting SWOT observed WSE results in improved

discharge estimates
March 30. 2010
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Discharge errors

» Comparison of predicted discharge at study basin outlet
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Spatially averaged error along the river channel
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Assimilated discharge estimates are clearly better
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Issue with temporal persistence, related to inflow errors
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Impact of different model errors

» Synthetic data assimilation framework allows exploring
impact of different model errors to discharge estimate

» Examples of assimilation with errors only in boundary
inflows, and channel characteristics

Q errors W-N-Z errors
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Sensitivity to coverage and observation
errors
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» How much is the skill S o0
decreased when compared “
to observing the entire
domain in one pass?
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» SWOT observations will
have uncertainty estimate g
associated

» Impact of assumption
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Future research

» Explicitly model tributaries

» Massively parallel computing towards global applications

» Evaluate different assimilation techniques and error
covariance modeling approaches

» Assimilate additional SWOT observables (top width,
slopes)

» Evaluate information content of SWOT observations

» Estimate river channel bathymetry
» Calibrate hydrodynamic and hydrologic models



